ホーム > システムアーキテクト試験 > 2011年
システムアーキテクト試験 2011年 午前2 問21
次数がnの関係Rには、属性なし(φ)も含めて異なる射影は幾つあるか。
イ:2n
ア:n
ウ:n²
エ:2ⁿ(正解)
解説
次数がnの関係Rには、属性なし(φ)も含めて異なる射影は幾つあるか。【午前2 解説】
要点まとめ
- 結論:次数がの関係の異なる射影は通り存在します。
- 根拠:射影は属性の部分集合を選ぶ操作であり、属性の集合の部分集合の数はだからです。
- 差がつくポイント:空集合(属性なし)も射影に含む点を理解しているかが重要です。
正解の理由
関係の属性が個あるとき、射影はこれらの属性の任意の部分集合を選択する操作です。属性の部分集合の数は集合の冪集合の大きさに等しく、通りあります。空集合も含むため、属性なしの射影もカウントされます。したがって、正解はエ: 2ⁿです。
よくある誤解
射影の数を属性の個数やその倍数、二乗などと誤解しがちですが、射影は属性の部分集合の数であるためが正しいです。
解法ステップ
- 関係の属性数をと確認する。
- 射影は属性の部分集合を選ぶ操作であることを理解する。
- 属性の部分集合の数はであることを思い出す。
- 空集合(属性なし)も射影に含むため、が答えとなる。
選択肢別の誤答解説
- ア:
属性の個数だけ射影があると誤解。実際は部分集合の数なので不足。 - イ:
属性数の2倍と誤解。射影は部分集合の数で指数的に増える。 - ウ:
属性数の二乗と誤解。射影は組み合わせの数で指数関数的。 - エ:
属性の部分集合の数として正しい。空集合も含む。
補足コラム
射影はリレーショナルデータベースの基本操作の一つで、特定の属性だけを抽出するために使われます。属性の部分集合の数はであり、これを理解することはデータベース設計やクエリ最適化に役立ちます。
FAQ
Q: 射影に空集合を含める理由は何ですか?
A: 空集合の射影は属性を全く選ばない操作で、理論上存在するためカウントに含めます。
A: 空集合の射影は属性を全く選ばない操作で、理論上存在するためカウントに含めます。
Q: 射影と選択の違いは何ですか?
A: 射影は属性の列を選ぶ操作、選択は行(タプル)を条件で絞る操作です。
A: 射影は属性の列を選ぶ操作、選択は行(タプル)を条件で絞る操作です。
関連キーワード: 射影, 部分集合, 冪集合, リレーショナルデータベース, 属性数